Benha University		Final Term Exam			
Faculty of Engineering- Shoubra		Date: May 23, 2016			
Eng. Mathematics & Physics Department		Course: Mathematics 1 – B			
Preparatory Year (تخلفات)	enna UNIVERSV	Duration: 3 hours			
The Exam consists of one page Answer All Questions No. of questions: 4 Total Mark: 100					
Question 1 (a) If $A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 0 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 & 4 \\ 3 & 3 & 0 \end{bmatrix}$. Find, if possible : $A + B$, $A \cdot B$, $A \cdot B^{t}$, $ A $, $ A^{`} \cdot B $. (b) If $A = \begin{bmatrix} -1 & 2 \\ 2 & 2 \end{bmatrix}$.					
(i)Find the eigenvalues and eigenvectors of A.					
(ii)Write Hamilton equation and find A^{-1}					
(1) which Hamilton equation and this A = 0					
(III)Find the eigenvalues of : I(A)	= 2		2		
Question 2					
(a) Using the binomial theorem, expand : $\sqrt{3x+4}$					
(b) Solve the linear system: $3x + 2y - 3z = 4$, $2x - y = 1$, $x + 3y - 3z = 5$.			5		
(c) Find S, S ₁₀ from each series: (i) $\sum_{r=1}^{n} (2r-1)(1+r^2)$ (ii) $\sum_{r=1}^{n} \frac{1}{r^2+3r+2}$					
(d)Using the mathematical induction, prove that:					
(i) $1 + 3 + 5 + \dots + (2n - 1) = n$	(ii) 1 + 2 +	$4 + \dots + 2^{n-1} = 2^n - 1$	8		
Question 3 (a)Transform the equation $x^2 - 6xy + 9y^2 + 4x + 8y + 15 = 0$ to new axes					
(b)A point moves so that its distance from the x – axis is half of its distance from the point					
(2, 3). Find the equation of its locus. (c)Show that the equation : $12x^2 + 7xy - 10y^2 + 13x + 45y - 35 = 0$ represents					
two straight lines and find the angle between them.					
(d)Find the equation of the circle which passes through the points (1, 2), (8, 9) and cuts the circle $x^2 + y^2 = 25$ at right angle.			7		
Question 4					
(a)Find the vertex, focus, directrix and length of latus rectum the parabola :					
$y^{-} + 4x + 2y - 8 = 0$. (b)Find the vertices foci and directrix of the ellipse $\cdot 4x^{2} \pm 9y^{2} - 144$					
(c)Show that the line $2x + y = 4$ is tangent to the circle $x^2 + y^2 + 6x - 10y + 29 = 0$					
(d)Trace the curve $\cdot 9r^2 - 24rv + 1$	$6v^2 - 18x - 101v + 100$	$\theta = 0$			

Answer

Question 1

(a)
$$A + B = \begin{bmatrix} 3 & 4 & 5 \\ 5 & 3 & 2 \end{bmatrix}$$
, A.B and |A| are not exist.
A. $B = \begin{bmatrix} 1 & 3 & 1 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 4 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 9 & 12 \\ 12 & 6 \end{bmatrix}$.
A'. $B = \begin{bmatrix} 1 & 2 \\ 3 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 1 & 4 \\ 3 & 3 & 0 \end{bmatrix} = \begin{bmatrix} 8 & 7 & 4 \\ 6 & 3 & 12 \\ 8 & 7 & 4 \end{bmatrix}$. |A'.B| = 0
(b)(i) $|A - \lambda I| = \begin{vmatrix} -1 - \lambda \\ 2 & 2 - \lambda \end{vmatrix} = (-1 - \lambda)(2 - \lambda) - 4 = \lambda^2 - \lambda - 6 = 0$
Then, the eigenvalues are: $\lambda_1 = 3$, $\lambda_2 = -2$.
From the equation, $\begin{bmatrix} -1 - \lambda & 2 \\ 2 & -\lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$
For : $\lambda_1 = 3$, $\begin{bmatrix} -4 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$
For : $\lambda_2 = -2$, $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$
Then $-4x + 2y = 0$, $2x - y = 0$
Then $2x = y =$ any number except 0
Put $x = 1$, we get $y = 2$ and the
corresponding eigenvector is: $X_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
(b)(ii)The Hamilton equation is: $A^2 - A - 6I = 0$
Since $|A| = -6$. Then inverse A exists. Multiply the Hamilton equations by A^{-1} .

Then
$$A - I - 6A^{-1} = 0$$
.
Then $A^{-1} = \frac{1}{6}(A - I) = \frac{1}{6}(\begin{bmatrix} -1 & 2\\ 2 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}) = \frac{1}{6}\begin{bmatrix} -2 & 2\\ 2 & 1 \end{bmatrix}$
(b)(iii)The eigenvalues of $f(A) = 2^A$ are $f(3) = 2^3 = 8$, $f(-2) = 2^{-2} = \frac{1}{4}$.
Question 2
(2 Marks)

(a)
$$\frac{1}{\sqrt{3x+4}} = \frac{1}{2} \left(1 + \frac{3}{4}x \right)^{-\frac{1}{2}} = \frac{1}{2} \left(1 - \frac{3}{8}x + \frac{27}{8x16}x^2 + \cdots \right), \quad \left| \frac{3}{4}x \right| < 1$$

----- (4 Marks) (b) $G = \begin{bmatrix} 1 & 3 & -3 & 5 \\ 3 & 2 & -3 & 4 \\ 2 & -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -3 & 5 \\ 0 & -7 & 6 & -11 \\ 0 & -7 & 6 & -9 \end{bmatrix} = \begin{bmatrix} 1 & 3 & -3 & 5 \\ 0 & -7 & 6 & -11 \\ 0 & 0 & 0 & 2 \end{bmatrix}$ We see that rank A is 2 but rank G is 3. Then, there is no solution. ----- (5 Marks) (c)(i)Since $u_r = (2r - 1)(1 + r^2) = 2r^3 - r^2 + 2r - 1$ Then $S_n = \frac{1}{2}n^2(n+1)^2 - \frac{1}{6}n(n+1)(2n+1) + n(n+1) - n$ Then $S = \infty$ $S_0 = (50)(121) - \frac{1}{6}(10)(11)(21) + 100 = 5765$ ----- (4 Marks) (c)(ii)Since $u_r = \frac{3}{r^2 + 3r + 2} = \frac{1}{r+1} - \frac{1}{r+2}$. Then $S_n = \frac{1}{2} - \frac{1}{n+2}$. Then $S = \frac{1}{2}$ and $S_{10} = \frac{1}{2} - \frac{1}{12} = \frac{5}{12}$ ----- (4 Marks) (d)(i)Prove that: $1 + 3 + 5 + \dots + 2n - 1 = n^2$ (1)At n = 1, the left hand side (L.H.S) of this relation is 1 and the right hand side (R.H.S) of this relation is 1. Then this relation is true at n = 1. (2)Assume that this relation is true at n = k. This means that $1 + 3 + 5 + \dots + 2k - 1 = k^2$ (3)We shall prove that this relation is true at n = k + 1. Or prove that, $1 + 3 + 5 + \dots + (2k + 1) = (k + 1)^2$ From step 2, add 2k + 1 to both sides, we get $1 + 3 + 5 + \dots + (2k - 1) + (2k + 1) = k^{2} + (2k + 1) = (k + 1)^{2}$ Then this relation is true for all n. ----- (4 Marks) (d)(ii) prove that: $1 + 2 + 4 + \dots + 2^{n-1} = 2^n - 1$ (1)At n = 1, the left hand side (L.H.S) of this relation is 1 and the right hand side (R.H.S) of

this relation is 1. Then this relation is true at n = 1.

(2)Assume that this relation is true at n = k.

This means that $1 + 2 + 4 + \dots + 2^{k-1} = 2^k - 1$

(3)We shall prove that this relation is true at n = k + 1.

Or prove that, $1 + 2 + 4 + \dots + 2^{k} = 2^{k+1} - 1$

From step 2, add 2^k to both sides, we get

 $1 + 2 + 4 + \dots + 2^{k-1} + 2^k = 2^k - 1 + 2^k = 22^k - 1 = 2^{k+1} - 1$

Then this relation is true for all n.

------ (4 Marks)

Dr. Mohamed Eid

Question (3)

(a)Transform the equation $x^2 - 6xy + 9y^2 + 4x + 8y + 15 = 0$ to new axes through (-2,1).

Answer

Put x = x - 2 and y = y + 1 $(x - 2)^2 - 6(x - 2)(y + 1) + 9(y + 1)^2 + 4(x - 2) + 8(y + 1) + 15 = 0$ $\boxed{x^2 - 6xy + 9y^2 - 6x + 38y + 57 = 0}$

(b)A point moves so that its distance from the x – axis is half of its distance from the point (2,3). Find the equation of its locus.

Answer

Let the point is P(x,y) its distance from the x - axis is y and its distance from the point

(2,3) is
$$\sqrt{(x-2)^2 + (y-3)^2}$$
 the locus described by
 $y = \frac{1}{2}\sqrt{(x-2)^2 + (y-3)^2}$
 $4y^2 = x^2 - 4x + 4 + y^2 - 6x + 9$
 $3y^2 - x^2 + 4x + 6y - 13 = 0$

(c)Show that the equation $12x^2 + 7xy - 10y^2 + 13x + 45y - 35 = 0$ represents to two straight lines, find the angle between them, and find separately the two straight lines. **Answer**

The general form for equation which represents to two straight lines is

$$ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$$
 by comparison we find
 $a = 12, \ 2h = 7, \ b = -10, \ 2g = 13, 2f = 45, \ c = -35$

the discriminant is

$$\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = \begin{vmatrix} 12 & \frac{7}{2} & \frac{13}{2} \\ \frac{7}{2} & -10 & \frac{45}{2} \\ \frac{13}{2} & \frac{45}{2} & -35 \end{vmatrix} = \frac{1}{8} \begin{vmatrix} 24 & 7 & 13 \\ 7 & -20 & 45 \\ 13 & 45 & -70 \end{vmatrix} = 0$$

hence the given equation represents to two straight lines

since
$$12x^2 + 7xy - 10y^2 = (3x - 2y)(4x + 5y)$$
 then
 $12x^2 + 7xy - 10y^2 + 13x + 45y - 35 = (3x - 2y + c_1)(4x + 5y + c_2)$
 $= 12x^2 + 7xy - 10y^2 + (3c_2 + 4c_1)x + (5yc_1 - 2c_2)y + c_1c_2 = 0$

Then $(4c_1 + 3c_2) = 13$, $(5yc_1 - 2c_2) = 45$ and $c_1c_2 = 35$

solve the first two equation we get $c_1 = 7, c_2 = -5$

Therefore the required separated equations of the lines are

3x-2y+7=0 and 4x+5y-5=0 it is noticed that the two lines 3x-2y=0 and $3x-2y+c_1=0$ are parallel. Also

4x+5y=0 and $4x+5y+c_2=0$ are parallel lines.

Hence the angle between the two lines represented by the general equation equal the angle between the two lines represented by the homogenous equation $ax^2 + 2hxy + by^2 = 0$

$$\tan \theta = \pm \frac{2\sqrt{h^2 - ab}}{a + b} = \pm \frac{2\sqrt{(49/4) + 120}}{2} = 11.5 \text{ and } \theta = 85^{\circ} 1' 48''$$

(d)Find the equation of the circle which passes through the points (8, 9), (1, 2) and cut the circle $x^2 + y^2 = 25$ at a right angle.

Answer

Let the equation be $x^2 + y^2 + 2gx + 2fy + c = 0$ (1) Since the circle cut the circle $x^2 + y^2 = 25$ (2)

Then the line segment of the centers and the two radii form aright angle triangle

 $g^{2} + f^{2} = r_{1}^{2} + r_{2}^{2}$ $g^{2} + f^{2} = 25 + g^{2} + f^{2} - c$ c = 25(8,9) on the circle then $8^{2} + 9^{2} + 16g + 18f + 25 = 0$ (1,2) on the circle then $1^{2} + 2^{2} + 2g + 4f + 25 = 0$ Solve to find f, g

Question (4)

(a)Find the vertex, focus, directrix and length of the latus rectum of the parabolas

$$y^2 + 4x + 2y - 8 = 0$$

Answer

$$y^{2} + 4x + 2y - 8 = 0$$

 $(y^{2} + 2y + 1) = -4x + 9$
 $(y + 1)^{2} = -4(x + 2.25) \quad a = -1$
Since a is negative then the curve open to the left side
Vertex at (-2.25, -1)
Axis of symmetry are $x = -2.25, y = -1$
Focus at (-2.25 + a, -1) = (-2.25 - 1, -1) = (-3.25, -1)
Length of the latus rectum = 4a =4

(b)Findthevetices, foci, directrix of the ellipse $4x^2 + 9y^2 = 144$

Answer

$$4x^2 + 9y^2 = 144$$
. Divide the equation by 144, we get $\frac{x^2}{36} + \frac{y^2}{16} = 1$

$$a^2 = 36, \ b^2 = 16$$

The center at (0, 0) and the vertices at (± 6.0),(0, ± 4)

Major axis = 2a =12 and minor axis = 2b =8 $b^2 = a^2(1-e^2)$ $e = \sqrt{1-\frac{b^2}{a^2}} = \sqrt{1-\frac{16}{36}} = \sqrt{\frac{20}{36}} = \frac{\sqrt{5}}{3}$ Foci at $(\pm ae, 0) = (\pm 2\sqrt{5}, 0)$

Equation of the directrix is $x = \pm \frac{a}{e} = \pm \frac{3 \times 6}{\sqrt{5}} = \pm \frac{18}{5}\sqrt{5}$

(c)Show that the line 2x + y = 4 is a tangent to the circle $x^2 + y^2 + 6x - 10y + 29 = 0$. Answer

The given line is tangent if the perpendicular from the center of the circle equal its radius in length

Center of the circle at (-3, 5) and its radius equal $\sqrt{9+25-29} = \sqrt{5}$

And the perpendicular from the center to the line is $\left|\frac{2(-3)+5-4}{\sqrt{4+1}}\right| = \frac{5}{\sqrt{5}} = \sqrt{5}$ then the

line is a tangent.

(d)Trace the curve $9x^2 - 24xy + 16y^2 - 18x - 101y + 19 = 0$

Answer

$$\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = \begin{vmatrix} 9 & -12 & -9 \\ -12 & 16 & -101/2 \\ -9 & -101/2 & 19 \end{vmatrix} =$$

 $h^2 = (-12)^2 = 144$, ab = (9)(16) = 144. Since $h^2 = ab$ The conic section is a parabola The equation is $(3x-4y)^2 - 18x - 101y + 19 = 0$ and the straight line 3x - 4y = 0 as a new

axis of x

We rotate the axes by angle θ such that $\tan \theta = \frac{3}{4}$ substitute in the equation by

 $x = X\cos\theta - Y\sin\theta = \frac{4X - 3Y}{5}$

 $y = X\sin\theta + Y\cos\theta = \frac{3X + 4Y}{5}$

The equation becomes $25Y^2 - 75X - 70Y + 19 = 0$

and complete the square we get $\left(Y - \frac{7}{5}\right)^2 = 3\left(X + \frac{2}{5}\right)$ (*)

take the point $A\left(-\frac{2}{5},\frac{7}{5}\right)$ as the origin for the new axes OX, OY, and The focus at $F\left(\frac{7}{20},\frac{7}{5}\right)$

then the equation of the cone with respect to the new coordinates is $Y^2 = 3X$ vertex at A

Dr. Fathi Abdsallam

Final Exam and ILOs

Course Title: Mathematics 1-B

Code: EMP 021

	ILOs			
Questions	Knowledge and	Intellectual Skills	Professional and	
	Understanding	Intellectual Skills	Practical Skills	
	a.1	b.1	c.1	
Q1		\checkmark	\checkmark	
Q2		\checkmark		
Q3			\checkmark	
Q4		\checkmark	\checkmark	
	On Makernal Til	Du Tathi dh farlla		

Dr. Mohamed Eid

Dr. Fathi Abdsallam